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The nonlinear Schroedinger {NLS) equation describes the spatio-
temporal evolution of the complex envetope function ot a narrow-
banded, nonlinear wave train. Here | exploit the nonlinear Fourier
structure of NLS, known as the inverse scattering transform, to study
nonlinear periodic modulations in the spectral domain. Numerical
algorithms are presented for both the direct and inverse scattering
transforms of the “defocusing” NLS equation with periodic boundary
conditions. A discrete algorithm is given tor computing the monodromy
matrix of periodic spectral theory and the direct scattering transform is
then computed from the elements ot this matrix. A fast algorithm for the
inverse scattering transform in terms of the hyperelliptic function
representation is also given; solutions to the defocusing NLS equation
are determined by a linear superposition of these nonlinear oscillation
modes. The direct algorithm uses computer time proportional to M7,
where A is the number of points in the discrete envelope function of
the wave train. The Inverse scattering algorithm is “fast” in the sense
that it is M3 this contrasts to the periodic theta-function inverse
prablem for NLS which is M* and to the Gelfan'd-Levitan-Marchenko
integral equation for infinite-line boundary conditions which is also
M?*. Several wave train solutions of NLS are considered and their
inverse scattering transform spectra and nonlinear Fourier decomposi-
tions are discussed. Application of the method to the analysis of
computer generated or experimentally measured space or time series is
the major motivation for this work,  © 1993 Azademic Press, Inc.

L INTRODUCTION

The classic paper by Ablowitz, Kaup, Newell, and Segur
{AKNS) [1] synthesized a fundamental new idea in the
field of theoretical soliton physics. Their approach, which
they called the inverse scatiering transform (1ST), evolved
from the pioneering work of Gardner, Greene, Kruskal, and
Muira (GGKM) [2] and Zakharov and Shabat [3]. The
essential idea is that IST is a nonlinear generalization of
the ordinary linear Fourier transform to the solution of
particular noniinear partial differential (wave) equations
{PDEs) with infinite-line boundary conditions. Nonlinear
integrable PDEs of this type include the Korteweg-deVries
{KdV), the nonlinear Schroedinger {NLS), sine-Gordon,
sinh-Gordon, and modified Korteweg-deVries equations.
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GGKM solved the KdV cquation using a linear integral
equation due to Gelfan’d, Levitan, and Marchenko (GLM)
[4]; a key step in their approach was to associate a par-
ticular (spectral} eigenvalue problem, the time-independent
Schroedinger equation of quantum mechanics, with KdV.
Zakharov and Shabat applied a similar technique to the
nonlinear Schroedinger equation [3], for a different eigen-
value problem, and found the exact spectral solution to
NLS in terms of two coupled GLM-type equations. AKNS
then generalized the method to a large class of wave
equations in one space and one time (1 + 1) dimensions
for infinite-line boundary conditions. The theoretical
formulation of IST has since been exiended 1o include
periodic boundary conditions for a considerable number of
nonlinear PDEs, including the KdV, NLS, sine-Gordon,
and smh-Gordon equations [5-127. For recent reviews
on inverse scattering theory and its application to the
solution of integrable PDEs the reader is referred to the
literature [4, 13-16].

The triumph of the soliton theories is undisputed; a large
number of fully nonlinear wave equations are known to be
integrable (fully solvable) in terms of the inverse scattering
transform. The focus in the present paper is to use IST (1)
to better understand the spectral and physical structure of
the nonlinear Schroedinger equation and (2} to develop
numerical algorithms for the nonlinear Fourier analysis of
computer generated or experimental data. Much of the
motivation of this work comes from recent successes in the
development of algorithms for the KdV equation [17-30]
and for the subsequent analysis of surface wave data from
both the laboratory and the ocean [17, 29-317. In this
context periodic boundary conditions are of primary interest
because stationarity and ergodicity must often be ensured in
an experimental context. Furthermore, since computer
generated signals are necessarily discrete, compatibility with
the finite-term, discrete Fourier transform is required
[25,27]. These conditions are met for the algorithms
developed herein.

Given that periodic boundary conditions are important
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in many physical applications, a number of investigators
have developed numerical methods for obtaining the
periodic scattering transform of space or time series [20,
23-28, 32-41]. An important consideration is the fact that
nonlinear integrable systems with periodic boundary condi-
tions have nonlinear basis functions (the nonlinear oscillation
modes of the PDE) which describe the dynamics of complex
wave trains. Periodic IST provides the solution to the wave
equations in terms of a linear superposition of the nonlinear
modes, referred to as the hyperelliptic-function representa-
tion [5-12, 15]; linearization of the hyperelliptic functions
by the Jacobian transformation of algebraic geometry leads
to the “theta function” inverse problem [5-127, an alter-
native approach to solving an integrable, nonlinear PDE
which is a periodic analogue of the infinite-line GLM equa-
tion. It is worth noting that the nonlinear periodic theories
are formulated in such a way as to easily reduce to ordinary
linear Fourier series for small amplitude wave motion
[18, 19]. Thus the nonlinear theoretical formulation given
herein automatically includes the mathematics of linear
Fourier series.

The nonlinear Schroedinger equation was solved for
periodic boundary conditions by Ma and Ablowitz [11].
NLS describes the nonlinear space/time evolution of the
envelope of a narrow-banded wave train, in which two cases
are of physical relevance: (1} the defocusing case, which is
essentially a multi-scale reduction of the KdV equation to
narrow-banded wave trains [21, 22, 24,427 and (2) the
focusing case, where envelope solitons can form and
propagate [43-48]. In the present work interest rests
primarily with the defocusing case; the focusing case will be
covered in a later paper. The periodic IST for defocusing
NLS parallels that of the KdV equation in many respects,
with some variations which are discussed below.

The major results of the present paper are the develop-
ment of numerical algorithms for both the direct and inverse
scattering problems for periodic boundary conditions. While a
number of investigators have developed algorithms for the
direct scattering problem [32-417], the approach given
herein provides for the first time a general numerical tool for
reconstructing the potential by the inverse scattering
problem. The present inverse algorithm has particular speed
advantages over the periodic theta function inverse problem
[11] and the Gelfan’d-Levitan~Marchenko integral equa-
tion in the formulation of NLS with infinite-line boundary
conditions. From a practical point of view the periodic algo-
rithm presented here for the inverse scattering problem uses
computer time proportional to A7 (3f is the number of dis-
crete points in the modulation envelope), while the standard
approach to the numerical solution of the GLM cquation is
M *; likewise the periodic theta function inverse problem {an
alternative to the hyperelliptic function representation used
here)is M* For a typical time series of M = 1000 points this
implies an improvement of roughly 1000 i computational

speed using the approach given herein. A further advantage
1s that one can explicitly compute each of the nonlinear
oscillation modes of periodic theory, whereas the theta func-
tion inverse problem and the infinite-line GLM equation
cannot easily be exploited for this purpose. Here | present
mutually complimentary algorithms for (a) the computa-
tion of the nonlinear oscillation modes of an input wave
train and (b) the subsequent reconstruction of the wave
train by a linear superposition law. These theoretical and
numerical tools have been recently applied to a related
PDE, the KdV equation, to analyze and nonlinearly filter
measured time series of complex wave motions from both
the laboratory and the ocean [25-31].

The methods given here may be thought of as time series
analysis technigues. They are fully discrete, exact approaches
to the scattering transform spectral problem and to the
associated hypereiliptic-funcion inverse problem for a
piecewise consignt wave train (Fig. 1). The perspective given
here contrasts (a) to other methods which might be thought
of as being purely numerical [33, 35, 36] (ie., those based
upon numerical integration of the spectral eigenvalue
problem by, say, a higher-order Runge-Kutta algorithm) or
{b}to alternative approaches which are purely discrete sofu-
tions to the scattering problem associated with a discrete
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FIG. 1. (a) A narrow-banded periodic nonlinear wave train »(x, 0)
with complex envelope g(x, 0) = A(x, 0) exp[ig(x, 0)] is assumed to be
given as a function of x at time 7= 0. Note that the wave train is localized
on the spatial interval (0, L). The wave train of (a) is discretized at intervals
Ax and, with the aid (say)} of the Hilbert transform, a discrete envelope
function A{x,,0) (0 <n< M —1)is computed (b) (dots). In crder to deter-
mine the scattering transform the discrete envelope is replaced by a piece
wise constant function (b). The direct scattering transform algorithm given
herein is analytically exact for wave envelopes of this Jatter type.
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NLS equation ([53], see also [32, 32, 34, 37-41] and
Section 5 below). The fact that the numerical approach
given here simultaneously (a) is purely discrete, (b} provides
a relatively fast inverse probiem {Af?), and (c) has certain
numerical advantages over integrable methods [11] means
that space and time series, with their requisite thousands of
degrees of freedom, can be analyzed with considerable case.
These new methods have been shown to be useful in the
analysis of laboratory and oceanic wave data, where long
time series of 1000 to 10000 points are commeoen and where
experimental noise must be accounted for [25-27, 29-317].

It is worthwhile giving some perspective about the
methods given herein with regard to the analysis of data using
the well-known linear Fourier transform. For the analysis of
space or time series one has essentially two numerical tools,
one the direct, the other the inverse Fourier transform. The
direct algorithm allows one to determine the Fourier spec-
trum as an aid to the interpretation of data. The inverse
algorithm allows one (a) to reconstruct the input time series
from the Fourier spectrum or (b) to filter the data, ie., to
remove certain (often high) frequencies and to reconstruct
the time series in the absence of these frequencies. The latter
application is particularly important in the removal of high
frequency noise which may be present in the data. The spirit
of the present paper is to develop analogous tools for the
nonlinear Fourier analysis of data, here assumed to behave
approximately like the NLS equation. This paper gives
algorithms for both the direct and inverse scattering trans-
forms for NLS. One is thus able to compute the spectrum
from the direct transform and to reconstruct the input
space or time series from the inverse transform. Tn the latter
operation one may also nonlinearly filter the data, ie,
selectively remove particular frequency components in the
spectral domain, in the presence of nonlinear interactions,
and reconstruct the time series in the absence of these
components. Nonlinear filtering as a useful tool for
eliminating certain kinds of experimental noise is discussed
elsewhere [25-27, 29-31].

The rest of this paper is organized as follows: in Section I
I briefly discuss the pericdic NLS equation and its physical
behavior. Section III is devoted to a discussion of IST for
periodic NLS in the defocusing regime. In Section IV
numerical aigorithms are given for both the direct and
inverse scattering transforms. In Section V the numerical
results and their associated physical implications are
presented.

II. THE NONLINEAR SCHROEDINGER EQUATION FOR
PERIODIC BOUNDARY CONDITIONS

Generally speaking the nonlinear Schroedinger equation
can be written in the dimensionless form

iq.""q.rx+2a |q|2q=0= (2]}

581/109/1-7

where g{x, t) is the complex envelope function of a carrier
wave of wavenumber k&, (Fig. 1). The physically significant
coeflicient ¢ = (1 1) lies before the nonlinear cubic term in
the equation. Depending upon the sign ¢ there are two
regimes of the motion. The so-called focusing regime
{oc= —1) admits non-dispersive stable solutions such as
solitons and “breather” trains. In the defocusing regime
(7= +1) soliton solutions do not occur; the motion is
nevertheless still quite rich in terms of nonlinear effects; this
is the case considered herein.

The nonlinear Schroedinger equation is a generic,
integrable wave equation in the sense that it arises in many
physical contexts as the first modulation correction to a
wave train in a nonlinear medium in 1 4+ I dimensions. For
example, NLS has been derived in the context of water
waves, plasma physics, nonlinear optics, etc. [4].

It is well known that defocusing NLS is derivable from
the KdV equation for the case ¢ = + 1. The opposite sign
o= —1 corresponds to deep water wave motion and
requires a separate derivation in its own right [44]. The
value of o is related to the water depth: the defocusing
regime corresponds to shallow water {o= +1), where
one-dimensional wave trains arc stable with respect to
modulations of the envelope; in this sense defocusing NLS
occurs in the same regime as that of the KdV equation. The
relationship between the periodic spectral (scattering)
theories for defocusing NLS and KdV has been extensively
investigated [21, 24].

I now briefly discuss the defocusing NLS equation as
it is derived from the KdV equation, which is written in
dimensional form,

nr+C0n.v+ann.r+ﬁn,r,r,x':0' (2'2)

Among many other applications the KdV equation
describes the propagation of small, finite-amplitude, long
waves in shallow water. Here 5(x, ¢) is the amplitude of the
free surface, co=(gh)"? is the linear phase speed, g is the
acceleration of gravity, h is the water depth, o = 3¢,/2h is
the coefficient of the nonlinear term, and § = c,h?*/6 is the
coefficient of the dispersive term. KdV describes broad-
banded wave motion; i.¢., the scattering transform spectrum
can cover a broad frequency range while still lying within
the range of physical applicability of the equation.

The defocusing NLS equation can be derived directly
from KdV (2.2) [21, 24, 42]. One assumes the Fourier spec-
trum is small, but finire in amplitude and narrow-banded, The
nonlinear Fourier spectrum of NLS is then easy to interpret
in terms of the physical behavior of the system [27]. I
briefly discuss some of the major results of the derivation in
order to establish the connection between the solutions
to the NLS equation and the physicai phenomenon in
question. An asymptotic, multi-scale expansion for the
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solution of the KdV equation gives a free surface elevation
which has the form of a moduiated Stokes wave (Fig. 1):

34%x, 1)
ah
34%(x, 1)
AR

nx, )= — + Alx, tYcos B(x, t)

cos 20(x, 1)+ ---. (2.3}

The phase 6 = 8(x, ¢} is given by

O=Fkox— (g + o'}t +¢(x, 1), (2.4)
where k, and @ are the wave number and frequency of the
“carrier wave” and the associated linear dispersion relation
is given by

@ = Coko— 3.

The amplitude dependent, nonlinear Stokes frequency
correction is

. 9coA?
w' = Tk (2.5)
where the overbar implies a spatial average over a single
period L of the wave train. In (2.3) A(x, 1) is a slowly
varying, real envelope function and ¢(x, ) is a slowly
varying real phase. In the absence of moduiations A(x, 1) =
Ag=const and ¢(x, 1) = ¢, =const and (2.3) reduces to the

familiar Stokes wave solution to KdV [49]. Generalty.

speaking A(x, t) and ¢(x, ¢) are real functions which may be
used to form a complex envelope function
W(x, 1) = A(x, t) et +idlxn (2.6)

such that (x, 1) is a solution to the shallow water (defo-
cusing) dimensional ronlinear Schroedinger (NLS) equation

oy oY
aatthCgax—

azljl QZ
Progat (24,6’!{0

) W1y =0, (27)

where C,=c,—3fk; is the group speed. In the small
ampilitude, narrow-banded approximation considered in
this paper the theoretical formulation given by the free sur-
face amplitude (2.3), together with the associated envelope
and phase- governed by NLS (2.6), (2.7) constitutes a
compiete, integrable theory for shallow water, nonlinear
wave motion which is equivalent to the KdV equation (2.2)
when the wave motion is sufficiently small in amplitude and
narrow-banded. Formally speaking the solutions to these
small-amplitude, narrow-banded systems do not contain
solitons.

In previous work [50] we have presented a numerical

algorithm for computing the nonlinear spectrum for the
NLS equation with infinite-line boundary conditions,
g(x)=q(x,0)—0 as |x] - o0. Here 1 extend the algorithm
to the case of periodic boundary conditions, g{x) = g(x + L).
This extension is useful, for exampile, in the analysis of water
wave trains, where recorded wave data often do not
asymptotically decay in space [29-31]. With periodic
boundary conditions there is no time-asymptotic state as
t — oo as one has for infinite-line boundary conditions; thus
the spectral components do not separate from each other
asymptotically in time as they do on the infinite line [27].
This implies that the dynamics of the periodic problem in
configuration space are much more complicated than the
motion for infinite-line boundary conditions and the inverse
scattering transform therefore becomes a valuable tool for
the analysis of experimental data [29-31].

IIl. THE PERIODIC INVERSE SCATTERING
TRANSFORM FOR THE DEFOCUSING NLS EQUATION

In the framework of the inverse scattering transform, the
spectrum is obtained by solving an eigenvalue problem in
which the complex envelope function ¢(x, 1) governed by
NLS (2.1) acts as a “potential” in the sense of inverse scat-
tering theory [11]. IST decomposes the original field ¢(x, 1)
into a summation of nonlinear basis functions (hyperelliptic
oscillation modes) that are strongly interacting functions of
space and time. In the linear {small amplitude, g — 0) limit
these modes reduce to the independent linear sinusoidal
components of an ordinary Fourier series [ 19, 207. In this
sense one can think of periodic IST as a generalization of
Fourier series.

1 now briefly discuss periodic scattering theory for NLS
[11]. The spectral eigenvalue problem is

¥o(x, 0)=AY(x, ), (3.1}
where ¥(x, {) = (}'(>})) is a two-component complex eigen-
function and A is the matrix

—iL g
A= .
(q* J‘C)’

¢ is the complex spectral wavenumber, g=g{x, 0) is the
complex solution of NLS (2.1) at time r=0, and the *
denotes complex conjugate. Here, and in the sequel, one
drops the time dependence from ¢(x, r) because of the
parametric character of time in the direct spectral problem
(3.1), (3.2). This is consistent with the fact that IST solves
the Cauchy problem for NLS (2.1); e.g., the spectrum of
g{(x, 0} is determined from (3.1}, (3.2) and is then evolved
forward in time by the inverse problem (see [11] and
below).

(3.2)
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I now briefly discuss the periodic spectrum associated
with the above spectral problem and refer the interested
reader to the literature for further details [11]. For ¥ a
solution of (3.1), another solution is given by

* *
sve(‘-”i(x’g*)). (3.3)
!10] (xs (: )
One fixes a basis by normalizing the two eigenfunctions ¥,
¥’ of (3.1) at some arbitrary base point x, in such a way as
to ensure independence. To this end the following simple

normalization is used:
¥ C)*(]
-YO 4 - 0

¥'(x,, a_:)=(?).

Dhue to the periodicity of the potential g{x}, ¥(x+ L, () will
also be a solution of (3.1) which can be expanded in terms
of the basis (3.4),

(3.4)

F(x+ L, {)=a(l) ¥(x, () +h({) (3.5)

#(C x),

where a({) and b{{} are called the scartering coefficients
and define (together with their complex conjugates) the
so-called monodromy matrix,

S, xo) = (H(C) b*(C*))

3.6
B a*(C%) (3.6)

Evaluating {3.5) at x = x, and using {3.4) gives

a(l, xp) =y (xo+ L, ()

(3.7)
BT, xol=¥lxo+ L, ).

Using the normalization (3.4) further implies:

det S(£) = a({) a*({*} = (L) b*({*) =1 (3.8}

A useful decomposition of an arbitrary function f({) is given
by
1
Frll)=51 O+ XD
1 (3.9)
Fi(Q) = (AE =/*(M)

and is employed below. Equations {3.9) reduce to the
ordinary real and imaginary parts of f({) whenever { e R.

The three kinds of IST spectrum are given by the
following conditions:

The main spectrum {{;} is given by the simple roots of

al)=1,  1<j<2N. (3.10)
The first auxiliary spectrum {y,} is defined by
a,(y)+b,(y)=0, I<i<N (3.11}
The second auxiliary spectrum {n,;} is delined by
a(n) +baln)=0, 1<i<A. (3.12)

The space/time invariant main spectrum {{,}, 1 /< 2N, is
a solution to (3.10). The auxiliarly spectrum {y,}, {#,}.
1 £i< N, corresponds to those values of { which satisfy
{3.11) and (3.12). Here N is the number of “open bands” or
“degrees of freedom” in the theory. The general solutions to
NLS are then constructed as nonlinear Fourier series with
exactly N terms ((3.16) below); these are then “N-band
potentials” in the terminology of periodic scattering
theory [5-12].

Several properties associated with the scattering spectra
(3.10)~(3.12) [11] are now given. The spectra ({;}, {7},
and {#,;} are all real and generally depend both on the
reference point x,; and on the time parameterization (since
¢ is a function of both x and ¢). The isospectrality of the
scattering problem means that as the potential g(x, ) obeys
the space-time evolution of the NLS equation the following
fundamental property holds:

dag_0ar_

g a1 (3.13)
This means that the main spectrum {{,;} (3.10) is constant
in both space and time.

The auxiliary spectra {y;, n;} are instead dependent on
space and time and are referred to as the nonlinear oscilla-
tion modes of the theory. The spatial dependence x, of
{y;»n;} is governed by two sets of coupled, nonlinear
ordinary differential equations:

LN 1
_ 2oy RO E =5 24
6x0 Hk#:(yl k#Ei }ﬁl (3 14)
on, 26,/ —Rin,) L '
lzN—” ( IIEED) c,),
Oxo  Ilew i—mI\JSZ, ,=1
where o, 3, = +1 (they are the signs of the square roots in
(3.14}) and

2N
RO=T] €4

i=1

{3.15)



98 A. R. OSBORNE

Equations (3.14) nonlinearly couple ail the Fourier com-
ponents {y,, 7} and give rise to quite complex dynamics for
defocusing NLS, as will be seen in the numerical examples
discussed below.

In this paper the explicit time evolution of the {y,, #;} is
not considered; this evolution is governed by nonlinear
ordinary differential equations given elsewhere [11]. All
numerical calculations made hergin may be viewed as
occurring at some arbitrary fixed time #,. One thus com-
putes the {y,, n,} as a function of x, in order to reconstruct
(from the spectrum) an arbitrary input wave train at the
fixed time #,.

The segment on the { axis between two band edges (where
a%({)= 1) defines an open band or degree-of-freedam of the
motion. The auxiliary spectra {y;, #,} lic inside the open
bands as they vary as a function of (x, 7} and there is one
and only one ¥, and %, for each open band. It is assumed
in the following that the potential g(x) gives rise to a
finite number N of open bands so that 1<i<N. The
scattering spectrum is thus defined by 4N real quantities
[ 172Ny, 1 <ES N}. The theoretical restriction
to N bands implies that there are exactly N terms in the non-
linear Fourier series expansion for the NLS equation as is
now discussed.

Knowing the spectrum {{;, y., #,} for every x and ¢,
allows reconstruction of the input potential by means of a
simple lincar superposition law which is referred to as the
inverse scattering transform:

2N N
qrlx, ty)= _:’lL Z G+ Z ndx, Lo}
J=1
2N

q(x, fo)=% Z C,-* z 7idX, to)

j=1 i=1

i=1

(3.16)

These formulas are essentially nonlinear Fourier series for
the real and imaginary parts of the solution to NLS, g(x, ¢).

What are the implications of constructing potentials from
exactly N bands on the analysis of space and time series
which have M discrete points? This probiem was considered
by Osborne and Bergamasco [18] for the KdV equation
and by Osborne [19] for defocusing NLS. Essentially one
find that a space/time series of exactly M points is described
by an N = M band potential. This parallels linear Fourier
analysis; i.e., a discrete function of M points has exactly M
terms in its associated Fourier series.

1V, THE NUMERICAL APPROACH AND ITS
IMPLEMENTATION

The Algorithm

I now discuss numericat algorithrus for the computation
of the direct and inverse scattering transforms for NLS.

These algorithms are extensions of previous work for the
infinite-line and periodic KdV equations [18-28] and for
the NLS equation on the infinite line [50].

I first address the direct algorithm, which uses a piecewise
constant discretization of the wave envelope function
g(x) into M constant values g, (0 <7< M —1) at spatial
values x,=n Ax, with discretization intervals Ax=L/M
(Fig. 1). Here L is the period of the envelope function,
g(x + L)=g(x), so that g, , = ¢,. The integration of the
Schroedinger equation (3.1) in a particular interval Ax gives
¥ (x,}=exp(Ax,), so that

¥(x,+ 4x) = ¥(x,.,)=Ulg,) ¥(x,) (4.1)
for Ax=x,,,~ x,- The matrix U(g) is found from the
matrix A (3.2} by

U(g)=exp[4x A] =exp (Ax(_i‘: q))
q it

cosh{x Ax}—%sinh(x Ax) g

= sinh(x 4x)
K

q*
Z_sinh{x 4x)
K

coshi{x Ax) + % sinh(x 4x)
(4.2)

and k* = gg* —{~.

The solution of the scattering problem is constructed
over one period (0 < x< L) from the contributions due to
matrices for each interval Ax. It follows from (4.1) that,
taking the product of M matrices {4.2),

0

Vxy)= n

n=M-—-1

U(g,) #(x,), (4.3)

and using the normalization (3.4), the monodromy matrix
S(x,) is then defined by

0

S(xo) = l_l

n=M-—-1

U(g.), (4.4)

where x, is an arbirrary base point in the interval (0, L).
Thus $(x,) is seen to carry the solution one period x, =L
from ¥(x,) to W(xo + x4 ) to satisfy the periodic boundary
conditions. According to (3.6), (3.7),

a(l, xq) =Sy

; (4.5)

b({, xg) = Sy;.
It is worth noting that the matrices U{q) and S(x,) have
determinants equal to one, so the relation (3.8) for the

scattering coefficients is automatically satisfied due to the
form of (4.3).
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The periodic spectra are then given as the solution to the
equattons

Main spectrum.  The {{,}, 1 < j<2N, are the solutions
of
$Tr(S)=

Re(S,, )= + 1. (462}

First auxiliary spectrum. The {y,(xg)}, 1
solutions of

< i< N, are the

m(S|1)+Im(S21)=O. (4.6b)

Second auxiliary spectrum. The {3,(x,)}, 1 i< N, are
the solutions of

Im(S,,) + Re(S,,) = 0. (4.6¢)

The y; and the y, lie between two discrete cigenvalues Cajs
Coivr: E557i Syt LSSy The Ly, Oy are
called “band edges.” These constraints on the bounds of
the auxiliary spectra are exploited below in the numerical
simulations.

The numerical scatiering transform spectrum is computed
by the following steps. Given a discrete, complex envelope
function ¢,=¢{x,) (0<n<gM 1), compute the matrix
U{g,) (4.2) for every n, forming the monodromy matrix
S(x,) as the product of these matrices by (4.4). Then the
spectrum as defined in (4.6) is found by a standard
Newtonian root-finding algorithm [507; the program uses
analytic expressions for the derivatives of the matrix (4.2)
and of the scattering coefficients with respect to {: this
allows rapid convergence of the Newton algorithm in (4.6).

The reconstruction of the compiex envelope g, by (3.16)
is carried out numerically by computing the auxiliary spec-
tra for the M different base points xo — Xq, X1, X3, s Xar— 1
This is done by computing M different monodremy
matrices (4.4) which differ from each other by a shift n 4x n
the potential, g, (with a corresponding shift in the periodic
boundary conditions g, ,,=4,). This procedure arises
from the following similarity transformation which is easily
derived from (4.4):

S(xn+ 1s C|)= U(an C;] S('xfl7 Cl) U(qn! Ci}k" (4'7)

This expression relates the monodromy matrix 8(x,, ., {,)
at a point x,, ., to the previously computed matrix $(x,, ;)
at x, for a particular value of wave number {;. Values of the
auxiliary spectra {y,(x,,{;}, #n:(x,,{;)} for each x, are
computed from the monodromy matrices S{x,) by (4.6).
Knowledge of the auxiliary spectra at every point x, allows

reconstruction of the complex amplitude function ¢(x,) via
a discrete version of (3.16):

N N
qR(xn): 421 Z C Z Hy (—"-’»;C)
J=1 =
an (4.8)
q{(xrx)= Z 5; Z '))(X",i:)
j=1 i=t
forn=0,1,2, .., M— 1, N=M. These are finite-term non-

linear generalizations of Fourier series for the discrete
envelope function ¢{x,) =g z(x,) + ig,;(x,). As indicated by
the notationeach nonlinear oscillationmode {x,, v, } depends
upon the spatial variable x, and upon the associated wave
number £,.

Physical Interpretation and Analysis of Data

The above scenario provides numerical tools for the
determination of the IST spectrum and for the reconstruc-
tion of the nonlinear wave train from the spectrum.
Physically the general solutions to NLS are determined by
nonlinear Fourier series of the form (3.16); the discrete
representation is given by (4.8). These relations constitute a
lincar superposition of the nonlinear hyperelliptic oscilla-
tion modes of the theory. The hyperelliptic modes reduce
to trigonometric functions in the small amplitude, linear
limit; therefore periodic IST for NLS may be viewed as a
generalization of ordinary Fourier series. The methods as
presented here also serve as tools for the nonlinear Fourier
analysis of data. In this latter application one determines
the nonlinear Fourier spectrum from a measured wave
train in order to enhance understanding of its physical
behavior [27].

The construction of nonlinear Fourier series also leads
naturally to the concept of nonlinear filrering. Formally
speaking, given a discrete wave train g{x,), one might wish
to remove certain wave number components in order to
more closely observe the behavior of others in the space or
time domain. The perspective is similar to that for linear
filtering, a technique commonly employed using the linear
Fourier transform [51]. One removes certain components
in the frequency domain and then inverts the transform to
obtain the signal without the unwanted components. For
example, one might want to filter out high frequency noise
or to observe only frequencies in a certain spectral band.
Filtering is analogously carried out in the nonlinear case by
means of (4.8); one selects the components he wants to
remove from the signal and simply deletes them from the
sum. The resultant reconstructed wave train no longer
contains the unwanted components. This idea was success-
fully employed in the analysis of ocean surface wave trains
to discover the presence of KdV solitons in measured wave
data in the Adriatic Sea [29].
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The filtering technique just discussed is referred to as a
“perfect filter” in analogy with its linear counterpart [517].
The construction of more complex flters, for which special
weighting of the nonlinear Fourier amplitudes and phases
might be necessary, is not a simple task. Furthermore,
different shape filters may be appropriate for different appli-
cations. Future work focuses on the development of other
kinds of nonlinear filters, methods for their computation,
and their respective efficiencies [52].

V. CONSTRUCTION AND ANALYSIS OF NONLINEAR
WAVE TRAINS

I now consider a number of exact wave train solutions of
the NLS equation, their associated spectral decompositions,
and physical interpretations. In each of the examples to be
considered I graph (a) the wave train under consideration,
{b) the linear Fourier amplitudes of the wave train, (c) the
Floquet discriminant of the wave train, A4({)=1Tr(S) as a
function of ¢, {d} the nonlinear oscillation modes, {5, ;},
l<i< N, and (e) the reconstructed wave train using the
linear superposition law (4.8). The following examples serve
to illustrate the method, provide for checkout of the
program, and enhance the physical understanding of the
defocusing NLS equation.

Plane Wave Solutions and Numerical Convergence

The first numerical example consists of the computation
of the spectrum associated with a simple plane wave g(x) =
goe™™, for which the scattering transform spectrum is
analytically known [11]. The main spectrum has one open

band {¥ = 1) and is given by

k

k
C1:’§+fioa C2=_5*%- (5.1}

Note that the amplitude of the open band ({, —{, =2g,} is
twice the amplitude of the envelope function g4. The algo-
rithm assumes a piecewise constant envelope function g(x, ),
which 1is, after all, an imperfect representation of the
continuous function g(x, 0) as a solution to NLS. I have
compared the numerically computed amplitudes (2g4 .om)
with the exact analytical results {5.1) to assess the behavior
of the algorithm. Numerical tests on the convergence of the
algorithm with respect to the discrete inverse scattering
transform of Ablowitz and Ladik [53] (as here adapted to
the periodic problem, see (5.2) below) (Fig. 2) have also
been conducted. Graphed is the numerically computed
relative error (=2 |qo — 4o.com 1/40) as a function of the
number of discretization points M. Both algorithms are seen
to give dramatic improvement in accuracy with increasing
M. However, the algorithm given herein improves at a faster
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FIG. 2. Comparison of the rates of convergence of the periodic direct
scattering transform given herein with the discrete algerithm of Ablowitz
and Ladik [53] wich has been adapted from the infinite-line problem to
the periodic problem as discussed in Section 5. The logarithm of the
relative error in the open band width of a plane wave (Eq.(5.1)) is graphed
as a funcion of the logarithm of the number of discretization intervals A;
Ablowitz and Ladik (———) and presents resuits ( ). Lines with slopes
M ~ (tesembling Ablowitz and Ladik) and M 2 (resembling the present
approach) are also shown.

rate. The error for the Ablowitz and Ladik algorithm
decreases as a power law M ~' while the present algorithm
decreases as M ~? for increasing M. This occurs in part
because the scattering matrix of Ablowitz and Ladik may be
obtained from the scattering matrix {4.2) by a leading order

Taylor expansicn in k Ax:
g dx
1 +il 4x)

This latter matrix, which arose originally from discrete,
infinite-line scattering theory [53], has been employed in
the above simulations for comparison to Ablowitz and
Ladik; i.e., the matrix (4.2) has been replaced by (5.2) in the
periodic formulation. The present work evidently sets the
stage for the luture development of algorithms with a wide
range of forms for the matrix U(g) which will probably
depend upon the simultaneous requirements of speed and
precision. For example, one might extend the Taylor series
approximation of (4.2) to higher order than given by (5.2)
or one might consider a piecewise linear approximation of
the potential, for which (4.2) contains Airy functions.

It should be rernembered that the new algorithm given
herein provides a numerical approach for computing an
estimate of the scattering spectrum of the contimious,

1—if Ax

U(q)z( i

(5.2)
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periodic NLS equation as described by Ma and Ablowitz
[11]. Alternatively the approach of Ablowitz and Ladik
[53] provides an exact theory of inverse scattering for
discrete envelope functions of the associated discrete NLS
equatior with infinite-line boundary conditions.

The method given here may be viewed as associated with
a discrete, periodic NLS-type cquation of higher order than

Amplinde

aft)

T, amplitude

FIG. 3. Snoidal wave simulation, m=0.900, k=4n/L, L =10, and M =512. In panel (a) are the real (
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that given in [53]. The new approach is not integrable
by IST because of the specific form (4.2) of U, but the
numerical characteristics of the algorithm are quite good;
replacement of the matrix U in the present algorithm by the
matrix of (5.2} makes the method consistent with Refl. [53]
but this reduces the numerical accuracy as the results of
Fig. 2 show.

Q.40

0.35

0.30

Q.25

Fourier amplitude

¥, amplitude

Amplitude

} and imaginary (——-) parts of the

envelope function. The linear Fourier amplitudes are shown in panel (b). The Floquet diagram shows two open bands {N'= 2} in the spectrum (¢). The
spatial evolution of the two hyperelliptic functions y,, y, is shown in (d). The spatial evolution of the hyperelliptic functions #,, #, is given in (e).
The horizontal dotted lines denote the band edges in (d) and (e). Finally in (f) the wave envelope is reconstructed (by Eq. (4.8)) using the two hyperelliptic

function solutions in {d), (e).
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Snoidal Wave Simulations period, gg = \/r_n D, and m is the modulus. The solution (5.3)
The NLS equation has the snoidal wave envelope solution has two open bands” in the Floq_uet spectrum. The first
[27] case considered has m=0.900 (Flg. 3), where panel (a)
’ shows the real (qr, ——) and imaginary (g,, ———} parts
gix) = goe™ sn{ px|m) (5.3)  of the complex envelope function. The Fourier transform of

the envelope function given in Fig. 3a is shown in Fig. 3b.
where p=4K(m)/L. K(m) is the elliptic integral, L is the The Floquet discriminant is graphed in Fig. 3¢ as a function
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FIG. 4. Snoidal wave simulation, m=0999, k =4n/L, L =10, and M =512, In panel (a) are the real ( ) and imaginary (——) parts of the
envelope function. The linear Fourier amplitudes are shown in panel (b). The Floquet diagram shows two open bands (¥ =2) in the spectrum (c). The
spatial evolution of the two hyperelliptic functions y,, y, is shown in (d). The spaiial evolution of the hyperelliptic functions #,, 5, is given in (e).
The horizontal dotted lines denote the band edges in (d) and (). Finally in (f) the wave envelope is reconstructed (by Eq. (4.8)) using the two hyperelliptic
function solutions in (d), (e).
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of {, where two open bands are clearly ¢vident. The hyper-
elliptic functions y,, y, are given in Fig. 3d while #,, 5, are
shown in Fig. 3e. Finally the superposition formulas (4.8)
are used to reconstruct the complex envelope ¢ (Fig. 3f),
which accurately agrees with the input wave form given in
Fig. 3a. For the present example the input wave form is
reproduced to eight significant figures. Double precision

020 —r—

Amplitude

1, amplitude

FIG. 5. Gaussian wave packet simulation, g,=0.19, 0,=2, k =2r/L, L =10, and M = 512. In panel (a) are shown the real {
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arithmetic was used in the program; the Newtonian search
for the zeros in Eqs. (4.6} was terminated when the
difference between successive zeros dropped below 10~'¢;
improved precision occurs upon reducing this value.

A more nonlinear snoidal wave case is considered in
Fig. 4 for which m=0999. In panel (a} the real and
imaginary parts of the envelope g, (——), ¢, (——) are
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v, amplitude

Amptitude

008 L

) and imaginary

(——-) parts of the envelope function. The linear Fourier components are given in panel (b), The Floquet diagram shows several small open bands in the
spectrum (¢). The spatial evolution of the hyperelliptic functions y; is shown in (d). The spatial evolution of the hyperelliptic functions #, is given in ().
The horizontal dotted lines denote the band edges in (d) and (e). Finally, in () the wave envelope is reconstructed (by Eq. (4.8)) using the two hyper-

eiliptic function solutions in (d), ().
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given. The Fourier transform of the envelope function is
shown in Fig. 4b. From Fig. 4c one sees that two large
bands are open in the spectrum. The spatial evolutions of
Vi, 72 (Fig. 4d) and 5, n, (Fig. 4¢} are seen to be more
complex than in Fig, 3. In fact these functions occasionalily
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N, amplitude
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F=TN ¥ T ]

o
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30 ¢

FIG. 6. Gaussian wave packet simulation, go=19, 0,=2, k=28/L, L =10, and M = 512. In panel (a) are the real {

“stick™ to and remain constant on a band edge (horizontal
dotted lines in Figs. 4d, e), a phenomena also seen in the
nonlinear dynamics of the KdV equation [23]. Using
Eq. (4.8), the inverse scattering transform gives the
reconstructed wave train in panels (f} (real part gg,
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} and imaginary (—-)

parts of the envelope function. The lincar Fourier amplitudes are given in panel (b). The Floquet diagram shows several large open bands in the spectrum
(c). The spatial evolution of the 17 hyperelliptic functions y, is shown in (d). The spatial evolution of the hyperelliptic functions 4, is given in (¢). The
horizontal dotted lines denote the band edges in (d) and (¢). Finally, in (f) the wave envelope is reconstructed (by Eq.(4.8)) using the hyperelliptic

function solutions in (d), ().
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), {g) {imaginary part g;,———) of Fig. 4. The
reconstruction process is found to reproduce the input wave
train in Fig.4a to good precision, approximately eight
significant figures.

The above two examples suggest that nonlinear Fourier
theory is substantially more complex than linear Fourier
theory. Nevertheless, using the numerical methods given
herein, it is quite straightforward to obtain the IST
spectrum and to reconstruct the nonlinear wave train.

Gaussian Wave Packet Simulations

I now study a more complex situation in which propa-
gating nonlinear Gaussian wave packets are considered. The
form of a wave packet is taken to be

ikx,, —xXayg
’

g(x)=goe™e (5.4)

where g, is the amplitude and ¢ is the half-width of the
pulse. The first case has a relatively small amplitude,
go=0.19. The real and imaginary parts of the Gaussian
packet are shown in Fig. 5a. The linear Fourier transform of
the packet is given in Fig. 5b. The Floquet diagram, Fig. 5c¢,
shows that the wave train is essentially linear; i.e., the open
bands are small in width and few in number. The represen-
tations for the hyperelliptic functions y, are presented in
panel (d); one can see that each of the degrees of freedom is
fairly sinusoidal, a further indication of the small-amplitude,
linear character of this example. The hyperelliptic functions
n; are shown in panel (e); these too are nearly sinusoidal
in appearance. I have used the largest seven hyperelliptic
oscillation modes to reconstruct the original wave train and
the results are shown in panel (f). Note that by including
only the first seven modes the reconstruction is not quite
perfect, as can be seen in the tails of the Gaussian function.
Improved agreement is obtained by including higher order
modes in the reconstruction process. These results parallel
linear Fourier analysis.

In order to better understand the influence of enhanced
nonlinear effects [ have considered another Gaussian packet
for which the amplitude is ten times larger than in Fig, 3,
go = 1.9. The real and imaginary parts of the Gaussian are
shown in Fig. 6a. The Fourier transform of this complex
envelope function is given in Fig. 6b. The Floquet spectrum
(Fig. 6¢c) is now quite different than the preceding case; ie.,
the number and size of the open bands has grown con-
siderably. Also shown are the largest seventeen oscillation
modes: the y, are given in Fig. 6d while the 5, are shown in
Fig. 6e. Note in particular that adjacent hyperelliptic func-
tions actually meet at the band edges for the largest (most
energetic) of the modes, an effect seen previously in the
example of Fig. 4. The largest nonlinear mode lies near the
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values y, # ~0 and the other modes lie further away {above
and below zero in Figs. 6d, ¢) and are smaller in amplitude
and higher in frequency (i.e., the open band widths in Fig. éc
decrease as one moves away from the values y, y ~0). The
observation that the number of oscillations of the hyper-
elliptic functions increases as the amplitude decreases also
holds true for the linear Fourier transform representation of
the Gaussian packet. The first 17 nonlinear modes are used
to reconstruct the original wave in Fig 6f. Some faint
oscillations occur in the tail of the Gaussian primarily
because I have taken only a small number of nonlinear
Fourier modes in the reconstruction process; increasing the
number of modes increases the precision.

VI. CONCLUSIONS

I have developed numerical methods for computing
both the direct and inverse scattering transforms for the
defocusing nonlinear Schroedinger equation. The approach
is based upon a piecewise constant representation for the
complex envelope function of NLS, for which one computes
the Flogquet spectrum (Eq. (4.6a)) and the hyperelliptic
function oscillation modes (Egs. (4.6b), (4.6c)). A linear
superposition of the oscillation modes using (4.8) allows
one fo reconstruct the wave train or to nonlinearly filter
noise or other undesirable components. It is expected that
one of the most important applications of the algorithm will
be the analysis of nonlinear wave data in both laboratory
and field conditions.

It is worthwhile discussing certain results relating to non-
linear filtering applications of the algorithms given herein
(see analogous considerations for the KdV equation in
Refs. [25-27, 29-317). One can ask: What influence do non-
linear interactions have on a filtering procedure which is
based upon the linear superposition law (4.8)? Due to non-
linear interactions each hyperelliptic function influences the
behavior of ali the others and one would further expect the
nearest-neighbor interactions to be of prime importance. It
should therefore not be surprising that the arbitrary
removal of certain strongly interacting spectral components
may influence the outcome of the filtering process. This is, in
fact, what one finds numericaily. Generally speaking an
iterative filtering process must be carried out to reduce the
effect of nonlinear interactions, particularly outside the
frequency range of interest; i.e., deleting certain hyperelliptic
functions in (4.8) (outside a particular frequency range, a
band pass filter) does not generally remove all of the
influence of the nonlinear interactions and a second or third
filtering operation must be carried out in ordet to remove
additional high frequency energy. This effect was noted by
Osborne et al. [29] in the analysis of oceanic wave data
using the scattering transform for the periodic KdV equa-
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tion; two filtering iterations enabled the removal of the
radiation spectrum to allow observation of the soliton
component in a measured gceanic wave train.

The reader may further ask why the focusing case has not
been addressed in the present paper. This topic deserves a
separate paper in its own right, dedicaied 1o the details of
the behavior of the non-self-adjoint spectral problem and to
the hyperelliptic inverse problem for the focusing NLS
equation. There are several technical issues which require
lengthy discussion. The hyperelliptic functions generally do
not he inside the open bands in the spectrum but are free to
wander anywhere in the complex plane. Numerically this
requires additional nontrivial code to find zeros in the
complex plane and to follow the spatial dynamics of the
hyperelliptic functions without having the convenient
constraint that they be confined within the open bands, as
for the defocusing case. This behavior is deeply linked to the
problem of instabilities in focusing NLS. Additionally, the
problem of high order poles in the focusing problem is
crucial, since second {or higher) order poles may contribute
to the spectrum and consequently need to be included in the
inverse problem. The analysis considered herein covers C™
initial vatues of the Cauchy probiem for defocusing NLS;
however, for the focusing case this issue is far from being
completely resolved, suggesting that the inverse problem
may not be able to construct all potentials of the focusing
NLS equation. These issues require considerable care and it
seems appropriate to put the results in a separate paper
where they can be given adequate attention.
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